Pearson Edexcel International GCSE (9-1)

May-June 2024 Assessment Window

Syllabus reference

4PH1 4SD0

International GCSE Physics and International GCSE Science (Double Award) Equation List

You are not permitted to take this notice into the examination. A version of this equation list will be included with the May–June 2024 question papers. This document is valid if downloaded from the <u>Pearson</u> Qualifications website.

Continue ▶

These equations may be required for both International GCSE Physics (4PH1) and International GCSE Combined Science (4SD0) papers.

1. Forces and Motion

average speed =
$$\frac{\text{distance moved}}{\text{time taken}}$$

$$acceleration = \frac{change in velocity}{time taken}$$

$$(final speed)^2 = (initial speed)^2 + (2 \times acceleration \times distance moved)$$

$$v^2 = u^2 + (2 \times a \times s)$$

 $a = \frac{(v-u)}{t}$

force = mass
$$\times$$
 acceleration $F = m \times a$

weight = mass
$$\times$$
 gravitational field strength $W = m \times g$

2. Electricity

power = current
$$\times$$
 voltage $P = I \times V$

energy transferred = current
$$\times$$
 voltage \times time $E = I \times V \times t$

voltage = current
$$\times$$
 resistance $V = I \times R$

charge = current
$$\times$$
 time $Q = I \times t$

energy transferred = charge
$$\times$$
 voltage $E = Q \times V$

3. Waves

wave speed = frequency
$$\times$$
 wavelength $v = f \times \lambda$

frequency =
$$\frac{1}{\text{time period}}$$
 $f = \frac{1}{T}$

refractive index =
$$\frac{\sin(\text{angle of incidence})}{\sin(\text{angle of refraction})}$$
 $n = \frac{\sin i}{\sin r}$

$$\sin(\text{critical angle}) = \frac{1}{\text{refractive index}}$$
 $\sin c = \frac{1}{n}$

4. Energy resources and energy transfers

$$efficiency = \frac{useful\,energy\,output}{total\,energy\,output} \times 100\%$$

work done = force
$$\times$$
 distance moved

$$W = F \times d$$

gravitational potential energy = $mass \times gravitational$ field strength \times height

$$GPE = m \times g \times h$$

kinetic energy =
$$\frac{1}{2} \times \text{mass} \times \text{speed}^2$$

$$KE = \frac{1}{2} \times m \times v^2$$

$$power = \frac{work done}{time taken}$$

$$P = \frac{W}{t}$$

5. Solids, liquids and gases

$$density = \frac{mass}{volume}$$

$$\rho = \frac{m}{V}$$

$$pressure = \frac{force}{area}$$

$$p = \frac{F}{A}$$

pressure difference = height \times density \times gravitational field strength

$$p = h \times \rho \times g$$

$$\frac{pressure}{temperature} = constant$$

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

pressure × volume = constant

$$p_1 \times V_1 = p_2 \times V_2$$

8. Astrophysics

orbital speed =
$$\frac{2 \times \pi \times \text{orbital radius}}{\text{time period}}$$

$$v = \frac{2 \times \pi \times r}{T}$$

The equations on the following page will only be required for International GCSE Physics.

These additional equations may be required in International GCSE Physics papers 2P and 2PR.

1. Forces and Motion

$$momentum = mass \times velocity p = m \times v$$

force =
$$\frac{\text{change in momentum}}{\text{time taken}}$$
 $F = \frac{\left(mv - mu\right)}{t}$

 $moment = force \times perpendicular distance from the pivot$

5. Solids, liquids and gases

change in thermal energy = mass \times specific heat capacity \times change in temperature

$$\Delta Q = m \times c \times \Delta T$$

6. Magnetism and electromagnetism

relationship between input and output voltages for a transformer

$$\frac{\text{input (primary) voltage}}{\text{output (secondary) voltage}} = \frac{\text{primary turns}}{\text{secondary turns}}$$

input power = output power
$$V_{\rm p} I_{\rm p} = V_{\rm s} I_{\rm s}$$

for 100% efficiency

8. Astrophysics

$$\frac{\text{change in wavelength}}{\text{reference wavelength}} = \frac{\text{velocity of a galaxy}}{\text{speed of light}} \qquad \frac{\lambda - \lambda_0}{\lambda_0} = \frac{\Delta \lambda}{\lambda_0} = \frac{\nu}{c}$$

END OF EQUATION LIST

W81410A 4